Scientific

  • Alexandri, G., Georgoulias, A.K., Meleti, C., Balis, D., Kourtidis, K.A., Sanchez-Lorenzo, A., Trentmann, J., Zanis, P., 2017. A high resolution satellite view of surface solar radiation over the climatically sensitive region of Eastern Mediterranean. Atmospheric Research 188, 107–121. https://doi.org/10.1016/j.atmosres.2016.12.015
  • Alexandri, G., Georgoulias, A.K., and Balis, D., 2021, Effect of Aerosols, Tropospheric NO2 and Clouds on Surface Solar Radiation over the Eastern Mediterranean (Greece). Remote Sens., 13, 2587. https://doi.org/10.3390/rs13132587.
  • Allen, R.J., Norris, J.R., and Wild, M. 2013: Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India, J. Geophys. Res. Atmos., 118, 6311–6336, doi:10.1002/jgrd.50426.
  • Arking, A., 1996: Absorption of solar energy in the atmosphere: discrepancy between model and observations. Science, 273, 779-782.
  • Augustine, J. A. & Capotondi, A., 2022. Forcing for multidecadal surface solar radiation trends over Northern Hemisphere continents. Journal of Geophysical Research: Atmospheres, 127, e2021JD036342. https://doi.org/10.1029/2021JD036342.
  • Bartók, B., Wild, M., Folini, D., Lüthi, D., Kotlarski, S., Schär, C., Vautard, R., Jerez, S., Imecs, Z., 2017. Projected changes in surface solar radiation in CMIP5 global climate models and in EURO-CORDEX regional climate models for Europe. Clim Dyn 49, 2665–2683. https://doi.org/10.1007/s00382-016-3471-2.
  • Bartók, B., Tobin, I., Vautard, R., Vrac, M., Jin, X., Levavasseur, G, Denvil, S., Dubus, L., Parey, S., Michelangeli, P-A., Troccoli, A., Saint-Drenan, Y-M., 2019: A climate projection dataset tailored for the European energy sector, Climate Services, 16, 100138, ISSN 2405-8807, https://doi.org/10.1016/j.cliser.2019.100138.
  • Boé, J., Somot, S., Corre, L., and Nabat, P., 2020. Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Clim Dyn, 54, 2981–3002. https://doi.org/10.1007/s00382-020-05153-1.
  • Brazel, A. and Tomalty, R., 2021: Shortwave Irradiance (1950 to 2020): Dimming, Brightening, and Urban Effects in Central Arizona? Climate, 9(9), 137. https://doi.org/10.3390/cli9090137.
  • Chakraborty, TC., Lee, X., and Lawrence, D. M., 2021: Strong local evaporative cooling over land due to atmospheric aerosols. Journal of Advances in Modeling Earth Systems, 13, e2021MS002491. https://doi.org/10.1029/2021MS002491.
  • Chakraborty, T., and Lee, X., 2021. Large Differences in Diffuse Solar Radiation among Current-Generation Reanalysis and Satellite-Derived Products. Journal of Climate, 34(16), 6635-6650. doi: 10.1175/JCLI-D-20-0979.1.
  • Chakraborty, T. C., and Lee, X. H., 2021. Using supervised learning to develop BaRAD, a 40-year monthly bias-adjusted global gridded radiation dataset. Scientific Data, 8(1). http://doi.org/10.1038/s41597-021-01016-4 (Original work published SEP 15)
  • Cherian, R., Quaas, J., Salzmann, M., and Wild, M., 2014: Pollution trends over Europe constrain global aerosol forcing as simulated by climate models, Geophys. Res. Lett., 41, 2176-2181  DOI: 10.1002/2013GL058715.
  • Chiacchio, M., and Wild, M., 2010: Influence of NAO and clouds on long-term seasonal variations of surface solar radiation in Europe, J. Geophys. Res., 115, D00D22, doi:10.1029/2009JD012182.
  • Chiacchio, M., Ewen, T., Wild, M., Chin, M., and Diehl, T.  2011:  Decadal variability of aerosol optical depth in Europe and its relationship to the temporal shift of the NAO in the realm of dimming and brightening", J. Geophys. Res., 116, D02108, doi:10.1029/2010JD014471.
  • Cusack, S., A. Slingo, J.M. Edwards and M. Wild 1998: The relative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Q.J.R. Meteorol. Soc. 124, 2517-2526.
  • DiPasquale, R.C. and C.H. Whitlock, 1995: Global Distribution of surface shortwave fluxes derived from satellite data for the World Climate Research Programme. Int. J. of Climatology, 15, 961-973.
  • Folini, D., and Wild, M., 2015:  The effect of aerosols and sea surface temperature on China's climate in the late twentieth century from ensembles of global climate simulations, J. Geophys. Res. Atmos., 120, 2261-2279, DOI: 10.1002/2014JD022851.
  • Freychet, N., Tett, S. F. B., Bollasina, M., Wang, K. C., and Hegerl, G., 2019: The local aerosol emission effect on surface shortwave radiation and temperatures. Journal of Advances in Modeling Earth Systems,11, 806–817. https://doi.org/10.1029/2018MS00153.
  • Garratt, J.R., 1994: Incoming shortwave radiation at the surface, a comparison of GCM results with observations. J. Climate, 7, 72-80.
  • Garratt, J.R. and A. Prata, 1996: Downwelling longwave fluxes at continental surfaces - a comparison of observations with GCM sumulations and implications for the global land-surface radiation budget. J. Climate, 9, 646-655.
  • Ghosh et al., 2022: Cleaner air would enhance India's annual solar energy production by 6-​28 Twh. Environ. Res. Lett. 17 054007.
  • Gilgen, H., Wild, M., and Ohmura, A., 1998: Means and trends of shortwave irradiance at the surface estimated from Global Energy Balance Archive data. J. Climate, 11, 2042-2061.
  • Gilgen, H., Roesch, A., Wild, M., and Ohmura, A. 2009: Decadal changes of shortwave irradiance at the surface in the period 1960 to 2000 estimated from Global Energy Balance Archive. J. Geophys. Res., 114, D00D08, doi:10.1029/2008JD011383.
  • Glantz, P., Fawole, O. G., Ström, J., Wild, M., & Noone, K. J., 2022. Unmasking the effects of aerosols on greenhouse warming over Europe. Journal of Geophysical Research: Atmospheres, 127, e2021JD035889. https://doi.org/10.1029/2021JD035889.
  • Hakuba, M.Z., Sanchez-Lorenzo, A., Folini, D., and Wild, M. 2013: Testing the homogeneity of short-term surface solar radiation series in Europe, AIP Conf. Proc., 1531, 700-703; doi: 10.1063/1.4804866.
  • Hakuba, M.Z., Folini, D., Sanchez-Lorenzo, A., and Wild, M. 2013: Spatial representativeness of ground-based solar radiation measurements, J. Geophys. Res., 118, 8585–8597, doi:10.1002/jgrd.50673.
  • Hakuba, M.Z., Folini, D., Schaepman-Strub, G., and Wild, M., 2014: Solar Absorption over Europe from collocated surface and satellite observations, J. Geophys. Res., 119, 3420-3437,  DOI: 10.1002/2013JD021421.
  • Hakuba, M.Z., Folini, D., Wild, M., 2016. On the Zonal Near-Constancy of Fractional Solar Absorption in the Atmosphere. Journal of Climate 29, 3423–3440. https://doi.org/10.1175/JCLI-D-15-0277.1
  • Han, L. and Menzel, L., 2022: Hydrological variability in southern Siberia and the role of permafrost degradation. Journal of Hydrology, 604(127203).
  • Hatzianastassiou, N., Papadimas, C.D., Matsoukas, C., Pavlakis, K., Fotiadi, A., Wild, M.,  and Vardavas, I. 2012: Recent regional surface solar radiation dimming and brightening patterns: inter-hemispherical asymmetry and a dimming in the Southern Hemisphere, Atmospheric Science Letters, 13, 43-48, DOI: 10.1002/asl.361.
  • Hatzianastassiou, N., Ioannidis, E., Korras-Carraca, M.B., Gavrouzou, M., Papadimas, C.D., Matsoukas, C., Benas, N., Fotiadi, A., Wild, M., and Vardavas, I., 2020: Global Dimming and Brightening Features during the First Decade of the 21st Century, Atmosphere, 11, 308, doi: 10.3390/atmos11030308.
  • Hayasaka, T., Kawamoto, K., Shi, G., and Ohmura, A., 2006: Importance of aerosols in satellite-derived estimates of surface shortwave irradiance over China. Geophysical Research Letters, 33(6). https://doi.org/10.1029/2005GL025093.
  • He, Y., Wang, K., Zhou, C., and Wild, M., 2018: A revisit of global dimming and brightening based on the sunshine duration, Geophysical Research Letters, 45, 4281–4289, https://doi.org/10.1029/2018GL077424.
  • He, J., Hong, L., Shao, C., Tang, W., 2023: Global evaluation of simulated surface shortwave radiation in CMIP6 models, Atmospheric Research, Volume 292, 106896, ISSN 0169-8095, https://doi.org/10.1016/j.atmosres.2023.106896.
  • Huss, M., Funk, M., and Ohmura, A., 2009: Strong Alpine glacier melt in the 1940s due to enhanced solar radiation. Geophysical Research Letters, 36(23). https://doi.org/10.1029/2009GL040789.
  • Imamovic, A., Tanaka, K., Folini, D., Wild, M., 2016. Global dimming and urbanization: did stronger negative SSR trends collocate with regions of population growth? Atmospheric Chemistry and Physics, 16, 2719–2725. https://doi.org/10.5194/acp-16-2719-2016
  • Jerez, S., Thais, F., Tobin I., Wild, M., Colette, A., Yiou, P., and Vautard, R. 2015: The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development. Renewable and Sustainable Energy Reviews, 42, 1-15. doi: 10.1016/j.rser.2014.09.041.
  • Jiao, B., Li, Q., Sun, W. & Wild, M., 2022. Uncertainties in the global and continental surface solar radiation variations: inter-comparison of in-situ observations, reanalyses, and model simulations. Clim Dyn 59, 2499–2516. https://doi.org/10.1007/s00382-022-06222-3.
  • Julsrud, I. R., Storelvmo, T., Schulz, M., Moseid, K. O., & Wild, M., 2022. Disentangling aerosol and cloud effects on dimming and brightening in observations and CMIP6. Journal of Geophysical Research: Atmospheres, 127, e2021JD035476. https://doi.org/10.1029/2021JD035476.
  • Kaplani, E., Kaplanis, S., and Mondal, S., 2018: A spatiotemporal universal model for the prediction of the global solar radiation based on Fourier series and the site altitude, Renewable Energy, 126, 933-942, ISSN 0960-1481, https://doi.org/10.1016/j.renene.2018.04.005.
  • Karger, D. N., Lange, S., Hari, C., Reyer, C. P. O., Conrad, O., Zimmermann, N. E., and Frieler, K., 2023: CHELSA-W5E5: daily 1 km meteorological forcing data for climate impact studies, Earth Syst. Sci. Data, 15, 2445–2464, https://doi.org/10.5194/essd-15-2445-2023.
  • Konzelmann, T., T. Cahoon and C. Whitlock, 1996: Impact of biomass burning in equatorial Africa on the downward surface shortwave irradiance: observation versus calculations. J. Geophys. Res., 101(D1), 22833-22844.
  • Kulesza, K., and Bojanowski, J.S., 2021: Homogenization of incoming solar radiation measurements over Poland with satellite and climate reanalysis data. Solar Energy, 225, 184-199, ISSN 0038-092X, https://doi.org/10.1016/j.solener.2021.07.031.
  • Leirvik, T., and Yuan, M., 2021: A machine learning technique for spatial interpolation of solar radiation observations. Earth and Space Science, 8, e2020EA001527. https://doi.org/10.1029/2020EA001527
  • Li, Z. and L. Moreau, 1996: Alteration of atmospheric solar absorption by clouds: simulation and observations. J. Appl. Meteorol, 35, 653-670.
  • Li, Z., C.H. Whitlock, and T.P. Charlock, 1994: The variable effect of clouds on atmospheric absorption of solar radiation. Nature, 376, 486-490.
  • Liang, S., Wang, K., Zhang, X., and Wild, M., 2010: Review on Estimation of Land Surface Radiation and Energy Budgets From Ground Measurement. Remote Sensing and Model Simulations. IEEE J. of Selected Topics in Applied Earth Observations and Remote Sensing, 3, 225-240.
  • Ma, Q., Wang, K., Wild, M., 2015. Impact of geolocations of validation data on the evaluation of surface incident shortwave radiation from Earth System Models. Journal of Geophysical Research-Atmospheres, 120, 6825–6844. https://doi.org/10.1002/2014JD022572.
  • Magnus, J.R., Melenberg, B., Muris, C., and Wild, M., 2013: Statistical Climate-Change Scenarios, J. Environmental Statistics, 5, 1-18.
  • Makowski, K., Jäger, E., Chiacchio, M., Wild, M., Ewen, T., and Ohmura, A., 2009: On the relationship between diurnal temperature range and surface solar radiation in Europe. J. Geophys. Res., 114, D00D07, doi:10.1029/2008JD011104.
  • Mercado, L.M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild,, M., and Cox, P.M., 2009: Impact of Changes in Diffuse Radiation on the Global Land Carbon Sink. Nature, 458, 1014-1018
  • Moseid, K. O., Schulz, M., Storelvmo, T., Julsrud, I. R., Olivié, D., Nabat, P., Wild, M., Cole, J. N. S., and Takemura, T., 2020: Bias in CMIP6 models as compared to observed regional dimming and brightening, Atmos. Chem. Phys., 20, 16023–16040, doi: 10.5194/acp-20-16023-2020.
  • Müller, R., U. Pfeifroth, C. Träger-Chatterjee, J. Trentmann, and R. Cremer, 2015: Digging the METEOSAT Treasure—3 Decades of Solar Surface Radiation. Remote Sensing, 7, 8067-8101, doi:10.3390/rs70608067.
  • Müller Schmied, H. Müller, R., Sanchez-Lorenzo, A., Ahrens, B., and Wild, M., 2016: Evaluation of Radiation Components in a Global Freshwater Model with Station-Based Observations. Water, 8, 450; doi:10.3390/w8100450.
  • Nabat, P., Somot, S., Mallet, M., Sanchez-Lorenzo, A., and Wild, M., 2014: Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980, Geophys. Res. Lett., 41, DOI: 10.1002/2014GL060798.
  • Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M., and Wild, M., 2015: Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled Regional Climate System Model. Clim. Dyn., 44, 1127-1155, doi: 10.1007/s00382-014-2205-6.
  • Norris, J.R., and Wild, M., 2007: Trends in direct and indirect aerosol radiative effects over Europe inferred from observed solar “dimming” and “brightening”, J. Geophys. Res. 112, D08214, doi:10.1029/2006JD007794.
  • Norris, J., and Wild, M., 2009: Trends in Aerosol Radiative Effects over China and Japan Inferred from Observed Cloud Cover, Solar “Dimming”, and Solar “Brightening”. J. Geophys. Res., 114, D00D15, doi:10.1029/2008JD011378.
  • Ohmura, A. and Gilgen, H., 1993: Re-evaluation of the Global Energy Balance. In Interactions between Global Climate Subsystems, The Legacy of Hann. IUGG and AGU, Geophysical Monograph 75, IUGG Vol. 15, 93-110.
  • Ohmura, A., Bauder, A., Müller, H., and Kappenberger, G., 2007: Long-term change of mass balance and the role of radiation. Annals of Glaciology. 46(1), 367-374. DOI: 10.3189/172756407782871297.
  • Ohmura, A., 2009: Observed decadal variations in surface solar radiation and their causes. Journal of Geophysical Research: Atmospheres. 114(D10). https://doi.org/10.1029/2008JD011290
  • Ohmura, A., 2012: Present status and variations in the Arctic energy balance, Polar Science, 6(1), 5-13, ISSN 1873-9652, https://doi.org/10.1016/j.polar.2012.03.003.
  • Ohmura, A. & Boettcher, M., 2018. Climate on the equilibrium line altitudes of glaciers: Theoretical background behind Ahlmann's P/T diagram. Journal of Glaciology, 64(245), 489-505. doi:10.1017/jog.2018.41.
  • Ohmura A. & Boettcher M., 2022. On the Shift of Glacier Equilibrium Line Altitude (ELA) under the Changing Climate. Water; 14(18):2821. https://doi.org/10.3390/w14182821.
  • O'Sullivan, M., Zhang, Y., Bellouin, N., Harris, I., Mercado, L. M., Sitch, S., Ciais, P., and Friedlingstein, P., 2021: Aerosol–light interactions reduce the carbon budget imbalance. Environ. Res. Lett., 16, 124072.
  • Peng, L., Wei, Z., Zeng, Z., Lin, P., Wood, E.F., and Sheffield, J., 2021: Reducing Solar Radiation Forcing Uncertainty and Its Impact on Surface Energy and Water Fluxes. Earth and Space Science. 813-829. DOI: https://doi.org/10.1175/JHM-D-20-0052.1
  • Peng, X., She, J., Zhang, S., Tan, J., and Li, Y., 2019: Evaluation of Multi-Reanalysis Solar Radiation Products Using Global Surface Observations. Atmosphere, 10(42). https://doi.org/10.3390/atmos10020042.
  • Pfeifroth, U., A. Sanchez-Lorenzo, V. Manara, J. Trentmann, and R. Hollmann, 2018: Trends and Variability of Surface Solar Radiation in Europe based on Surface- and Satellite-based Data Records. Journal of Geophysical Research: Atmospheres, 123, 1735-1754, doi:10.1002/2017JD027418.
  • Phillips, P.C.B., Leirvik, T., Storelvmo, T., 2020. Econometric estimates of Earth’s transient climate sensitivity, Journal of Econometrics, 214(1), 6-32, ISSN 0304-4076, https://doi.org/10.1016/j.jeconom.2019.05.002.
  • Poliukhov, A.A., Chubarova, N.Y. & Volodin, E.M., 2022. Impact of Inclusion of the Indirect Effects of Sulfate Aerosol on Radiation and Cloudiness in the INMCM Model. Izv. Atmos. Ocean. Phys. 58, 486–493. https://doi.org/10.1134/S0001433822050097.
  • Przybylak, R., Svyashchennikov, P.N., Uscka-Kowalkowska, J., and Wyszyński, P., 2021: Solar Radiation in the Arctic during the Early Twentieth-Century Warming (192150): Presenting a Compilation of Newly Available Data. Journal of Climate, 21-37. DOI:https://doi.org/10.1175/JCLI-D-20-0257.1.
  • Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J. T., Washington, W.M., Fu, Q., Sikka, D.R., and Wild, M., 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. PNAS, 102, 5326-5333.
  • Raschke, E. and Ohmura, A., 2005: Radiation Budget of the Climate System. Hantel, M. (Ed.): Observed Global Climate, Group V: Geophysics, Landolt-Börnstein Numerical and Functional Relationships in Science and Technology, New Series, 6, 4.1-4.26
  • Remund, J., E. Salvisberg and S. Kunz, 1998: On the generation of hourly shortwave radiation data on tilted surfaces. Solar Energy. 62, 331 - 344.
  • Roesch, A., H. Gilgen, M. Wild and A. Ohmura, 1999: Assessment of GCM simulated snow albedo using direct observations. Climate Dynamics, 15, 405-418.
  • Rossow, W.B. and Z.-C. Zhang, 1995: Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. validation and first results. J. Geophys. Res., 100(D1), 1167-1197.
  • Sanchez-Lorenzo, A., and Wild, M., 2012: Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century, Atmos. Chem. Phys., 12, 8635–8644, doi:10.5194/acp-12-8635-2012.
  • Sanchez-Lorenzo, A. and Wild, M., and Trentmann, J., 2013: Validation and stability assessment of the monthly mean CM SAF surface solar radiation dataset over Europe against a homogenized surface dataset (1983–2005), Remote Sensing of Environment, 134, 355–366.
  • Sanchez-Lorenzo, A., Trentmann, J., and Wild, M., 2013: Validation of monthly surface solar radiation over Europe derived from the CM SAF dataset against homogenized GEBA series (1983-2005), AIP Conf. Proc., 1531, 432-435, doi: 10.1063/1.4804799.
  • Sanchez-Lorenzo, A., Wild, M., Brunetti, M., Guijarro, J. A., Hakuba, M. Z., Calbó, J., Mystakidis, S., and Bartok, B. 2015: Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012), J. Geophys. Res. Atmos., 120, doi:10.1002/2015JD023321.
  • Sanchez-Lorenzo, A., Enriquez-Alonso, A., Wild, M., Trentmann, J., Vicente-Serrano, S.M., Sanchez-Romero, A., Posselt, R., Hakuba, M.Z., 2017. Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983-2010. Remote Sensing of Environment 189, 108–117. https://doi.org/10.1016/j.rse.2016.11.018.
  • Schmied, H.M., Mueller, R., Sanchez-Lorenzo, A., Ahrens, B., Wild, M., 2016. Evaluation of Radiation Components in a Global Freshwater Model with Station-Based Observations. Water 8, UNSP 450. https://doi.org/10.3390/w8100450
  • Schwarz, M., Folini, D., Hakuba, M.Z., Wild, M., 2017. Spatial Representativeness of Surface-Measured Variations of Downward Solar Radiation. J. Geophys. Res. Atmos. 122, 2017JD027261. https://doi.org/10.1002/2017JD027261.
  • Schwarz, M., Folini, D., Yang, S., and Wild, M., 2019: The annual cycle of fractional atmospheric shortwave absorption in observations and models: spatial structure, magnitude and timing. J. Climate, 32, 6729-6748. doi: 10.1175/JCLI-D-19-0212.1.
  • Schwarz, M., Folini, D., Yang, S., Allan, R.P., and Wild, M., 2020. Changes in atmospheric shortwave absorption as an important driver of dimming and brightening. Nat. Geosci. 13, 110–115. https://doi.org/10.1038/s41561-019-0528-y.
  • Shao, C., Yang, K., Tang, W., He, Y., Jiang, Y., Lu, H., Fu, H. & Zheng, J., 2022. Convolutional neural network-based homogenization for constructing a long-term global surface solar radiation dataset. Renewable and Sustainable Energy Reviews, 169, 112952, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2022.112952.
  • Sheppard, R., and Wild, M., 2002: Simulated turbulent fluxes over land from General Circulation Models and Reanalyses compared with observations. Int. J. Climatology, 22, 1235–1247.
  • Shi, X., Wild, M., and Lettenmaier, D.P., 2010: Surface radiative fluxes over the pan-Arctic land region: variability and trends. J. Geophys. Res, 115, D22104, doi: 10.1029/2010JD014402.
  • Stavrakou, T., Mueller, J.F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Wild, M., and Xia, X.: 2014: Isoprene emissions over Asia 1979-2012 : impact of climate and land use changes, Atmos. Chem. Phys., 14, 4587-4605, doi:10.5194/acp-14-4587-2014.
  • Stegehuis, A.I., Vautard, R., Ciais, P., Teuling, A.J., Miralles, D.G., and Wild, M., 2015: An observation-constrained multi-physics WRF ensemble for simulating European mega heat waves, Geoscientific Model Development, 8, 2285-2298, DOI: 10.5194/gmd-8-2285-2015.
  • Stephens, G.L., Wild, M., Stackhouse, P., L’Ecuyer, T., and Kato, S., 2012: The global character of the flux of downward longwave radiation. Journal of Climate, 25, 2329-2340   DOI: 10.1175/JCLI-D-11-00262.1.
  • Storelvmo, T., Leirvik, T., Lohmann, U., Phillips, P.C.B., Wild, M., 2016. Disentangling greenhouse warming and aerosol cooling to reveal Earth’s climate sensitivity. Nature Geoscience, 9, 286-+. https://doi.org/10.1038/NGEO2670
  • Storelvmo, T., Heede, U.K., Leirvik, T., Phillips, P.C.B., Arnt, P. and Wild, M., 2018: Lethargic Response to Aerosol Emissions in Current Climate Models, Geophysical Research Letters, 45, 9814-9823, DOI: 10.1029/2018GL078298.
  • Streets, D.G., Yan, F., Chin, M., Diehl, T., Mahowald, M., Schultz, M., Wild, M., Wu, Y., Yu, C., 2009: Discerning human and natural signatures in regional aerosol trends, 1980-2006. J. Geophys. Res., 114, D00D18, doi:10.1029/2008JD011624.
  • Swift, L. A., 2018: New Radiative Model Derived from Solar Insolation, Albedo, and Bulk Atmospheric Emissivity: Application to Earth and Other Planets. Climate, 6(52). https://doi.org/10.3390/cli6020052.
  • Teuling, A.J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P., Buchmann, N., Ammann, C., Montagnani, L., Richardson, P., Wohlfahrt, G., and Seneviratne, S.I., 2009: A regional perspective on trends in continental evaporation. Geophys. Res. Lett., 36, 36, L02404, doi:10.1029/2008GL036584
  • Tong, L., He, T., Ma, Y., and Zhang, X. (2023): Evaluation and intercomparison of multiple satellite-derived and reanalysis downward shortwave radiation products in China, International Journal of Digital Earth, 16:1, 1853-1884, DOI: 10.1080/17538947.2023.2212918.
  • Volpert, E.V., and Chubarova, N.E., 2021: Long-term Changes in Solar Radiation in Northern Eurasia during the Warm Season According to Measurements and Reconstruction Model. Russ. Meteorol. Hydrol., 46, 507518. https://doi.org/10.3103/S1068373921080021
  • Wang, K., Dickinson, R.E., Wild, M., and Liang, S.E., 2010: Evidence for Decadal Variation in Global Terrestrial Evapotranspiration between 1982 and 2002, Part 2: Results. J. Geophys. Res., 115, D20113, doi:10.1029/2010JD01384.7
  • Wang, K., Dickinson, R.E., Wild, M., and Liang, S.E., 2012: Atmospheric impacts on climatic variability of surface incident solar radiation, Atmos. Chem. Phys., 12, 9581–9592, 2012, doi:10.5194/acp-12-9581-2012.
  • Wang, K. C., Ma, Q., Wang, X. Y., and Wild, M., 2014: Urban impacts on mean and trend of surface incident solar radiation. Geophys. Res. Lett., 41, 4664-4668 DOI: 10.1002/2014GL060201.
  • Wang, Q., Zhang, H., Yang, S., Chen, Q., Zhou, X., Xie, B., Wang, Y., Shi, G., and Wild, M., 2022: An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds, Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022.
  • Wang, Z., Zhang, M., Wang, L., Feng, L., Ma, Y., Gong, W., and Qin, W., 2021: Long-term evolution of clear sky surface solar radiation and its driving factors over East Asia, Atmospheric Environment, 262, 118661, ISSN 1352-2310, https://doi.org/10.1016/j.atmosenv.2021.118661.
  • Wang, Z., Zhang, M., Wang, L., and Qin, W., 2021. A comprehensive research on the global all-sky surface solar radiation and its driving factors during 1980–2019. Atmospheric Research, 265(105870). doi: 10.1016/j.atmosres.2021.105870.
  • Whitlock, C.H., T.P. Charlock, W.F. Staylor, R.T. Pinker, I.Laszlo, A.Ohmura, H.Gilgen, T.Konzelmann, R.C. DiPasquale, C.D. Moats, S.R. LeCroy and N.A. Ritchey, 1995: First global WCRP surface radion budget data set. Bull.Am.Met.Soc., 76(6), 905-922.
  • Wild, M., A.Ohmura, H.Gilgen and E.Roeckner, 1995a: Regional climate simulation with a high resolution GCM: surface radiative fluxes. Climate Dynamics, 11, 469-486.
  • Wild, M., A.Ohmura, H.Gilgen and E.Roeckner, 1995b: Validation of general circulation model simulated surface radiative fluxes using surface measurements from the Global Energy Balance Archive. J. Climate, 8, 1309-1324.
  • Wild, M., A.Ohmura, H.Gilgen, E.Roeckner and M.Giorgetta, 1996: Improved representation of surface and atmospheric radiation budgets in the ECHAM4 general circulation model. Max-Planck Institute for Meteorology Report No. 200, 32 pp. Available from MPI for Meteorolgy, Bundesstrassse 55, D-20146 Hamburg.
  • Wild, M., L. Dümenil and J.P. Schulz, 1996: Regional climate simulation with a high resolution GCM: surface hydrology. Climate Dynamics, 12, 755-774.
  • Wild, M., A. Ohmura and U. Cubasch, 1997: GCM simulated surface energy fluxes in climate change experiments. J. Climate, 10, 3093-3110.
  • Wild, M., A. Ohmura, H. Gilgen and J.J. Morcrette, 1997: Assessment of the ECMWF reanalysis radiative fluxes using surface observations. Proc. of the WCRP 1st International Conference on Reanalyses. Silver Spring, Maryland VA, 27-31 Oct. 1997.
  • Wild, M., A. Ohmura, H. Gilgen and J.J. Morcrette, 1998a: The Distribution of Solar Energy at the Earth's Surface as Calculated in the ECMWF Re-analysis. Geophysical Research Letters, 25, 4373-4376.
  • Wild, M., A. Ohmura, H. Gilgen, E. Roeckner, M. Giorgetta and J.J. Morcrette, 1998b: The disposition of radiative energy in the global climate system: GCM-calculated versus observation estimates. Climate Dynamics, 14, 853-869.
  • Wild, M., and Ohmura, A., 1999: The role of clouds and the cloud-free atmosphere in the problem of underestimated absorption of solar radiation in GCM atmospheres. Phys. Chem. Earth (B), 24, 261-268.
  • Wild, M., 1999: Discrepancies between model-calculated and observed atmospheric shortwave absorption in areas with high aerosol loadings. J. Geophys. Res., 104 (D22), 27361-27371.
  • Wild, M., 2000a: Absorption of solar energy in cloudless and cloudy atmospheres over Germany and in GCMs. Geophys. Res. Lett., 27, 959-962.
  • Wild, M., 2000b: Underestimation of GCM-calculated shortwave atmospheric absorption in areas affected by biomass burning. Advances in Global Change Research, 3, 127-149.
  • Wild, M., Ohmura, A., Gilgen, H., Morcrette, J.J., and Slingo, A., 2001: Downward longwave radiation in General Circulation Models. J. Climate, 14, 3227-3239.
  • Wild, M., 2001a: Collocated surface and satellite observations as constraints for Earth radiation budget simulations with global climate models. Advances in Global Change Research, 7, 85-102.
  • Wild, M., 2001b: Surface and atmospheric radiation budgets as determined in reanalyses, in IRS2000: Current Problems in Atmospheric Radiation, W.L. Smith and Yu. M. Timofeyev (Eds.). A. Deepak Publishing, Hampton, Virginia, p. 602-605.
  • Wild, M., and Ohmura, A., 2001: Longwave forcing at the surface as simulated in transient climate change experiments, in IRS2000: Current Problems in Atmospheric Radiation, W.L. Smith and Yu. M. Timofeyev (Eds.). A. Deepak Publishing, Hampton, Virginia, p. 745-748.
  • Wild, M., Ohmura, A., Gilgen, H., and Rosenfeld, D., 2004: On the consistency of trends in radiation and temperature records and implications for the global hydro-logical cycle. Geophys. Res. Lett., 31, L11201, doi: 10.1029/2003GL019188.
  • Wild, M., 2005: Solar radiation budgets in atmospheric model intercomparisons from a surface perspective. Geophys. Res. Lett., 32, L07704, doi:10.1029/ 2005GL022421.
  • Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C., Dutton, E., Forgan, B., Kallis, A., Russak, V., and Tsvetkov, A., 2005: From dimming to brightening: Decadal changes in solar radiation at the Earth’s surface. Science, 308, 847-850.
  • Wild, M., Long, C.N., and Ohmura, A., 2006: Evaluation of clear-sky solar fluxes in GCMs participating in AMIP and IPCC-AR4 from a surface perspective. J. Geophys. Res., 111, D01104, doi:10.1029/2005JD006118.
  • Wild, M., and Roeckner, E., 2006: Radiative fluxes in ECHAM5. J. Climate, 19, 3792-3809.
  • Wild, M., Ohmura A., Makowski, K., 2007: Impact of global dimming and brightening on global warming. Geophys. Res. Lett., 34, L04702, doi:10.1029/2006GL028031.
  • Wild, M., 2008: Decadal changes in surface radiative fluxes and their importance in the context of global climate change, in: Climate Variability and Extremes during the Past 100 years, Editors Stefan Brönnimann et al., , Advances in Global Change Research, 33,155-168.
  • Wild, M., Grieser, J. and Schär, C., 2008: Combined surface solar brightening and greenhouse effect support recent intensification of the global land-based hydrological cycle. Geophys. Res. Lett., 35, L17706, doi:10.1029/2008GL034842.
  • Wild, M., 2008: Shortwave and longwave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus, 60, 932 - 945. doi: 10.1111/j.1600-0870.2008.00342.x
  • Wild, M., Trüssel, B., Ohmura, A., Long, C.N. König-Langlo G., Dutton, E.G., and Tsvetkov, A., 2009: Global Dimming and Brightening: an update beyond 2000. J. Geophys. Res., 114, D00D13, doi:10.1029/2008JD011382.
  • Wild, M., 2009: Global dimming and brightening: A review. J. Geophys. Res. 114, D00D16, doi:10.1029/2008JD011470.
  • Wild, M., and Liepert, B., 2010: The Earth radiation balance as driver of the global hydrological cycle. Environm. Res. Lett., 5, 025203,doi: 10.1088/1748-9326/5/2/025203.
  • Wild, M., and Schmucki, E., 2011: Assessment of global dimming and brightening in IPCC-AR4/CMIP3 models and ERA40 based on surface observations. Clim. Dyn. 37, 1671–1688.
  • Wild, M. 2012: Enlightening Global Dimming and Brightening. Bull. Amer. Meteor. Soc., 93, 27–37, doi:10.1175/BAMS-D-11-00074.1
  • Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E.G., and König-Langlo, G., 2013: The global energy balance from a surface perspective, Clim. Dyn., 40, 3107-3134, Doi:10.1007/s00382-012-1569-8.
  • Wild, M., Folini, D., Hakuba, M., Schär, C., Seneviratne, S.I., Kato, S., Rutan, D., Ammann, C., Wood, E.F., and König-Langlo, G., 2015: The energy balance over land and oceans: An assessment based on direct observations and CMIP5 climate models. Clim. Dyn., Dyn., 44, 3393–3429, doi: 10.1007/s00382-014-2430-z.
  • Wild, M., 2016. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming. Wiley Interdisciplinary Reviews-Climate Change 7, 91–107. https://doi.org/10.1002/wcc.372.
  • Wild, M., 2017: Towards Global Estimates of the Surface Energy Budget. Curr. Clim. Change Rep, 3, 87–97. DOI 10.1007/s40641-017-0058-x.
  • Wild, M., 2017: Progress and challenges in the estimation of the Global Energy Balance. AIP Conf. Proc., 1810, 020004 (2017); doi: 10.1063/1.4975500.
  • Wild, M., 2018: Surface radiation budget and its variation under climate change, Promet, 100, 43-49.
  • Wild, M., 2020: The global energy balance as represented in CMIP6 climate models. Clim Dyn., 55, 553–577
  • Wild, M., Wacker, S., Yang, S., and Sanchez-​Lorenzo, A., 2021. Evidence for clear-​sky dimming and brightening in central Europe. Geophysical Research Letters, 48. doi: 10.1029/2020GL092216.
  • Wohland J., Brayshaw, D., Bloomfield, H., and Wild, M., 2020: European multidecadal solar variability badly captured in all centennial reanalyses except CERA20C, Environmental Research Letters, 10, 104021, doi: 10.1088/1748-9326/aba7e6.
  • Wyard, C., Doutreloup, S., Belleflamme, A., Wild, M. and Fettweis, X., 2018: Global Radiative Flux and Cloudiness Variability for the Period 1959–2010 in Belgium: A Comparison between Reanalyses and the Regional Climate Model MAR, Atmosphere, 7, 262, doi: 10.3390/atmos9070262.
  • Yang, S., Zhou, Z.J., Yu, Y., Wild, M., 2021. Cloud ‘'shrinking’' and ‘optical 'thinning'’ in the ‘'dimming'’ period and a subsequent recovery in the ‘'brightening’' period over China. Environmental Research Letters, 16, 1748-​9326. doi: 10.1088/1748-​9326/abdf89.
  • Yang, S., Zhang, X., Guan, S., Zhao, W., Duan, Y., Yao, Y., Jia, K., and Jiang, B., 2023: A review and comparison of surface incident shortwave radiation from multiple data sources: satellite retrievals, reanalysis data and GCM simulations, International Journal of Digital Earth, 16:1, 1332-1357, DOI: 10.1080/17538947.2023.2198262.
  • Yuan, M., Leirvick, T., and Wild, M., 2021. “Global Trends in Downward Surface Solar Radiation from Spatial Interpolated Ground Observations during 1961–2019”. Journal of Climate, 9501–9521. doi: 10.1175/JCLI-D-21-0165.1.
  • Zhang, X., Liang, S., Wang, G., Yao, Y., Jiang, B., Cheng, J., 2016. Evaluation of the Reanalysis Surface Incident Shortwave Radiation Products from NCEP, ECMWF, GSFC, and JMA Using Satellite and Surface Observations. Remote Sensing, (8). https://doi.org/10.3390/rs8030225
  • Zhang, X., Liang, S., Wild, M., Jiang, B., 2015. Analysis of surface incident shortwave radiation from four satellite products. Remote Sensing of Environment 165, 186–202. https://doi.org/10.1016/j.rse.2015.05.015
  • Zhang X. et al., 2019: "An Operational Approach for Generating the Global Land Surface Downward Shortwave Radiation Product From MODIS Data," in IEEE Transactions on Geoscience and Remote Sensing, 57(7), 4636-4650, doi: 10.1109/TGRS.2019.2891945.
  • Zhang, W., Zhang, X., Li, W., Hou, N., Wei, Y., Jia, K., Yao, Y., and Cheng, J., 2019: Evaluation of Bayesian Multimodel Estimation in Surface Incident Shortwave Radiation Simulation over High Latitude Areas. Remote Sens., 11, 1776. https://doi.org/10.3390/rs11151776
  • Zhao, G., Li, Y., Zhou, L. & Gao, HL., 2022. Evaporative water loss of 1.42 million global lakes. Nat Commun 13, 3686. https://doi.org/10.1038/s41467-022-31125-6.
  • Zou, L., Wang, L., Li, J., Lu, Y, Gong, W. and Niu, Y., 2019: Global surface solar radiation and photovoltaic power from Coupled Model Intercomparison Project Phase 5 climate models, Journal of Cleaner Production, 224, 304-324, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.03.268.
  • Zubler, E. M., D. Folini, U. Lohmann, D. Lüthi, C. Schär, and M. Wild, 2011: Simulation of dimming and brightening in Europe from 1958 to 2001 using a regional climate model. J. Geophys. Res., 116, D18205,  doi:10.1029/2010JD015396.
     
JavaScript has been disabled in your browser